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Abstract
In a S3× Z2 framework, realistic neutrino mixing was obtained radiatively at one-loop level. When max-
imal mixing occurs between the two right-handed neutrinos present in the model, one can get the form
of the left-handed Majorana neutrino mass matrix for θ13 = 0, θ23 = π/4 and solar mixing of any values
corresponding to the Tribimaximal (TBM), Bimaximal (BM) and Golden Ratio (GR) mixing scenarios in
this set-up. Once we tweak the maximal mixing between the two right-handed neutrinos, we get non-zero
θ13, deviation of θ23 from π/4 and small corrections to solar mixing. This scotogenic model also has two
inert SU(2)L doublet scalars odd under Z2 the lightest of which can be dark matter.
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1. INTRODUCTION
This talk is based1 on [1]. The Pontecorvo, Maki, Nakagawa, Sakata – PMNS – matrix, relating the neutrino mass and flavour
eigenstates is given by:

U =

 c12c13 s12c13 −s13e−iδ

−c23s12 + s23s13c12eiδ c23c12 + s23s13s12eiδ −s23c13
−s23s12 − c23s13c12eiδ −s23c12 + c23s13s12eiδ c23c13

 , (1)

with cij = cos θij and sij = sin θij. If we put θ13 = 0 and θ23 = π/4, the PMNS matrix in Eq. (1) simply becomes:

U0 =


cos θ0

12 sin θ0
12 0

− sin θ0
12√

2
cos θ0

12√
2

− 1√
2

− sin θ0
12√

2
cos θ0

12√
2

1√
2

 . (2)

In 2012, the short-baseline reactor anti-neutrino experiments [2] discovered non-zero θ13, before which models were constructed
with θ13 = 0 and θ23 = π/4 and θ12 varying to the specific values mentioned in Table 1 to yield the Tribimaximal (TBM), Bimaximal
(BM) and Golden Ratio (GR) mixing patterns. These TBM, BM and GR scenarios are also called together as popular lepton mixings
and have the structure of the mixing as in Eq. (2). The left-handed Majorana neutrino mass matrix in flavour basis for the popular
lepton mixings is thus given by:

M f lavour
νL = U0 Mmass

νL U0T =

a c c
c b d
c d b

 , (3)

where Mmass
νL ≡ (m0

1, m0
2, m0

3) and2

a = m1 cos2 θ0
12 + m2 sin2 θ0

12,

b =
1
2

(
m1 sin2 θ0

12 + m2 cos2 θ0
12 + m3

)
,

c =
1

2
√

2
sin 2θ0

12(m2 −m1),

d =
1
2

(
m1 sin2 θ0

12 + m2 cos2 θ0
12 −m3

)
. (4)

Here,

tan 2θ0
12 =

2
√

2c
b + d− a

. (5)

1The paper [1] on which this talk is based on was written during my post-doctoral research at Harish-Chandra Research Institute, Allahabad, India.
2The three neutrino mass eigenstates viz. m0

1 , m0
2 and m0

3 are non-degenerate.
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Model TBM BM GR

θ0
12 35.3◦ 45.0◦ 31.7◦

TABLE 1: Solar mixing angle val-
ues for TBM, BM, and GR.

The quantities a, b, c and d has to be non-zero for neutrino masses to be non-degenerate and realistic.
The 3σ global fits of the neutrino mixing angles [3, 4] are:

θ12 = (31.42− 36.05)◦,

θ23 = (40.3− 51.5)◦ ,

θ13 = (8.09− 8.98)◦. (6)

They clearly disagree with the popular lepton mixing scenarios such as TBM, BM and GR. Therefore, in order to make the neutrino
mixings to be realistic, one has to depart from the structure of the left-handed Majorana neutrino mass matrix3 in Eq. (3).

In this work we consider a S3× Z2 setup4 to generate the neutrino mixings in agreement with the neutrino oscillation data
radiatively at one-loop level. The model contains two Z2 odd right-handed neutrinos which when mixed maximally can yield the
structure of the left-handed Majorana mass matrix specific to θ13 = 0 and θ23 = π/4 as shown in Eq. (3). A slight deviation from
this maximal mixing in the right-handed neutrino sector can yield the non-zero θ13, deviation of θ23 from π/4 and small corrections
to the solar mixing angle θ12 in one stroke as required to be in agreement with the neutrino oscillation data. The model also has
two Z2 odd SU(2)L doublet scalars ηi ≡ (η+

i , η0
i )

T , (i = 1, 2) transforming as a doublet under S3. The lightest among these two
inert SU(2)L doublet scalars ηi can be a dark matter candidate.

In the scalar sector two more SU(2)L doublet scalars Φj ≡ (φ+
i , φ0

i ), (j = 1, 2) forming a S3 doublet are present that are even
under Z2. In the lepton sector, the left-handed SU(2)L doublet leptons LζL ≡ (νζ , ζ−)T

L with ζ = e, µ, τ are present among which Lµ

and Lτ form a doublet under S3 while Le is a singlet under S3. All the fields are even under Z2 except the right-handed neutrinos
NαR, (α = 1, 2) and ηi, (i = 1, 2). After spontaneous symmetry breaking (SSB), ηi being Z2 odd does not acquire vev but Φj gets vev
i.e., 〈Φj〉 = vj, (j = 1, 2). The quantum numbers of all the fields present in the model can be found in Table 2. Here we consider the
neutrino sector only and work in a basis in which the charged lepton mass matrix is diagonal and the whole mixing comes from
the neutrinos.

Leptons SU(2)L S3 Z2

LeL ≡
(
νe e−

)
L 2 1 1

LζL ≡
(

νµ µ−

ντ τ−

)
L

2 2 1

NαR ≡
(

N1R
N2R

)
1 2 −1

Scalars SU(2)L S3 Z2

Φ ≡
(

φ+
1 φ0

1
φ+

2 φ0
2

)
2 2 1

η ≡
(

η+
1 η0

1
η+

2 η0
2

)
2 2 −1

TABLE 2: Particle content of the model with
their respective properties under the sym-
metries of the model. We consider the neu-
trino sector only.

3Prior to this such enterprises had also been pursued in [5, 6]. In [6] a similar scotogenic model at one-loop level for realistic neutrino mixings based on A4 symmetry
can be found. A detailed analysis of the vacuum expectation value (vev) structures of the scalars present in [6] in the context of alignment was done in [7].

4In [1] detailed discussion about S3 flavour symmetry can be found.
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FIGURE 1: Neutrino mass at one-loop in a scotogenic S3× Z2 setup.

2. THE MODEL
The neutrino mass at one-loop level can be given by Fig. (1). The relevant terms5 of the S3× Z2 invariant scalar potential that can
contribute to the left-handed Majorana neutrino mass matrix via the four-point scalar vertex in Fig. (1):

Vrelevant ⊃ λ1

[{
(η†

2 φ2 + η†
1 φ1)

2
}
+ h.c.

]
+ λ2

[{
(η†

2 φ2 − η†
1 φ1)

2
}
+ h.c.

]
+ λ3

[{
(η†

1 φ2)(η
†
2 φ1) + (η†

2 φ1)(η
†
1 φ2)

}
+ h.c.

]
. (7)

The couplings λj (j = 1, 2, 3) are real.
At each of the vertices in Fig. 1 all the symmetries are conserved. The S3× Z2 invariant Yukawa terms are:

LYukawa = y1

[
(N2Rη0

2 + N1Rη0
1)νe

]
+ y2

[
(N1Rη0

2)ντ + (N2Rη0
1)νµ

]
+ h.c. (8)

The S3× Z2 conserving right-handed neutrino direct mass terms:

Lright−handed neutrinos =
1
2

mR12

[
NT

1RC−1N2R + NT
2RC−1N1R

]
. (9)

If S3 is conserved then one gets only non-zero off-diagonal terms in the right-handed Majorana neutrino mass matrix. The S3
symmetry is broken softly by6:

Lso f t =
1
2

[
mR11 NT

1RC−1N1R + mR22 NT
2RC−1N2R

]
, (10)

to obtain non-zero diagonal terms in the right-handed Majorana neutrino mass matrix and write it as7:

MνR =
1
2

(
mR11 mR12

mR12 mR22

)
. (11)

The Z2 symmetry in the model is responsible for stabilizing the dark matter candidate. We have Z2 odd fields ηi, (i = 1, 2) and
NαR, (α = 1, 2) in our model. The right-handed neutrinos NαR are chosen to be heavier than ηi. Thus the lightest of the ηi scalars
can behave as a dark matter candidate8.

Next we briefly discuss the contribution coming from the loop in Fig. (1) to the left-handed Majorana neutrino mass matrix
[8]. For simplicity, let λ represent commonly all the quartic couplings i.e., λ1, λ2 and λ3 present in the S3× Z2 conserving scalar
potential in Eq. (7). We also neglect the mass splittings between η1 and η2 and define m0 as their common mass. If ηRj and ηI j be
the real and imaginary parts of the η0

j , then generally one can have the mass difference between ηRj and ηI j to be proportional to

λvj. Taking mR to be the average mass of N1R and N2R and defining z ≡ m2
R

m2
0

we can write the second diagonal element of M f lavour
νL

as9:

(M f lavour
νL )22 = λ

vmvn

8π2
y2

2
mR22

[ln z− 1] . (12)

5The total S3× Z2 invariant scalar potential is given in [1] out of which only the (η†φ)(η†φ) terms contribute to the neutrino mass matrix as at the four-point scalar
vertex in Fig. (1), two η fields are created and two φ fields are annihilated.

6The S3 symmetry is broken softly at the scale at which the right-handed neutrinos acquire their mass.
7The symmetric nature of the matrix in Eq. (11) is due to its Majorana nature.
8It might appear that the S3 symmetry will cause the ηi fields to be equal in masses, but since the S3 symmetry is softly broken at the scale in which NαR gets mass, a

small mass splitting between the two ηi fields can be achieved.
9For detailed discussion, see [1].
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when m2
R >> m2

0. From Eq. (8), one can notice that νµ couples only with N2R at both the Yukawa vertices in Fig. (1), y2 being
the corresponding Yukawa coupling. Thus in Eq. (12) we only have contributions from y2 and mR22 of Eq. (11). Similarly the

(M f lavour
νL )33 can also be read off by replacing mR22 by mR11 in the expression of (M f lavour

νL )22 in Eq. (12). For the (2,3) off-diagonal

entry of M f lavour
νL , we have νµ at one Dirac Yukawa vertex and ντ at the other Dirac Yukawa vertex of Fig. (1) that couple to N2R

and N1R respectively, y2 being the Yukawa coupling at both the vertices. Thus (M f lavour
νL )23 will depend on mR12 together with mR11

and mR22 of Eq. (11). Thus,

(M f lavour
νL )23 = λ

vmvn

8π2
y2

2mR12

mR11 mR22

[ln z− 1] . (13)

Similarly we can get the other entries of M f lavour
νL . In order to make the equations look simpler we can absorb everything else in

the expressions of (M f lavour
νL )αβ, (α, β = 1, 2, 3) except the vevs, the Yukawa couplings and the quartic couplings in some loop-

contributing factors rαβ given by:

r11 ≡ 1
8π2mR11

[ln z− 1] ,

r22 ≡ 1
8π2mR22

[ln z− 1] ,

r12 ≡ mR12

8π2mR11 mR22

[ln z− 1] . (14)

for the expressions of elements of M f lavour
νL in Eqs. (12) and (13).

The left-handed Majorana neutrino mass matrix obtained in this setup:

M f lavour
νL =

χ1 χ4 χ5
χ4 χ2 χ6
χ5 χ6 χ3

 (15)

with,

χ1 ≡ y2
1

[
4r12v1v2(λ3 + λ1 − λ2) + (r11v2

1 + r22v2
2)(λ1 + λ2)

]
χ2 ≡ y2

2

[
r22(λ1 + λ2)v2

1

]
χ3 ≡ y2

2

[
r11(λ1 + λ2)v2

2

]
χ4 ≡ y1y2

[
r12(λ1 + λ2)v2

1 + 2r22(λ3 + λ1 − λ2)v1v2

]
χ5 ≡ y1y2

[
r12(λ1 + λ2)v2

2 + 2r11(λ3 + λ1 − λ2)v1v2

]
χ6 ≡ y2

2 [2r12(λ3 + λ1 − λ2)v1v2] (16)

and 〈Φj〉 ≡ vj where (j = 1, 2). If χ1 6= χ2 = χ3 and χ4 = χ5, we get the structure of neutrino mass matrix in Eq. (3) i.e., the
one specific to θ13 = 0, θ23 = π/4. One can indeed get this for v1 = v2 and r11 = r22 = r. Now r11 = r22 = r basically means
mR11 = mR22 in Eq. (11) which in its turn indicate maximal mixing between the two right-handed neutrino states N1R and N2R.
Setting r11 = r22 = r and v1 = v2 in Eq. (15) leads to:

M f lavour
νL = v2

 y2
1[4r12λ123 + 2rλ12] y1y2[r12λ12 + 2rλ123] y1y2[r12λ12 + 2rλ123]

y1y2[r12λ12 + 2rλ123] y2
2rλ12 y2

2(2r12λ123)
y1y2[r12λ12 + 2rλ123] y2

2(2r12λ123) y2
2rλ12

 . (17)

where we have defined λ12 ≡ λ1 + λ2 and λ123 ≡ λ3 + λ1 − λ2. The following identifications are required to match Eq. (17) with
Eq. (3).

a ≡ y2
1v2[4r12λ123 + 2rλ12] = y2

1v2[4r12(λ3 + λ1 − λ2) + 2r(λ1 + λ2)]

b ≡ y2
2v2rλ12 = y2

2v2r(λ1 + λ2)

c ≡ y1y2v2[r12λ12 + 2rλ123] = y1y2v2[r12(λ1 + λ2) + 2r(λ3 + λ1 − λ2)]

d ≡ y2
2v2(2r12λ123) = y2

2v2[2r12(λ3 + λ1 − λ2)]. (18)

With the form of left-handed Majorana mass matrix for θ13 = 0 and θ23 = π/4 achieved within the model framework, let us now
try to get the realistic mixing angles i.e., θ13 6= 0, deviations of θ23 from π/4 as well as small corrections to the solar mixing. In
order to get that, as already mentioned, we will shift from the condition r11 = r22 = r by a small amount i.e., apply r22 = r11 + ε
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keeping v1 = v2 = v fixed. The criterion r22 = r11 + ε makes mR11 6= mR22 in Eq. (11) causing small deviation from the maximal

mixing between N1R and N2R. Using r22 = r11 + ε with v1 = v2 = v in Eq. (17) one can write M f lavour
νL as M f lavour

νL = M0 + M′,
where M0 is the dominant part and M′ is a small contribution proportional to ε. Thus,

M0 = v2

 y2
1[4r12λ123 + 2r11λ12] y1y2[r12λ12 + 2r11λ123] y1y2[r12λ12 + 2r11λ123]

y1y2[r12λ12 + 2r11λ123] y2
2r11λ12 y2

2(2r12λ123)
y1y2[r12λ12 + 2r11λ123] y2

2(2r12λ123) y2
2r11λ12

 , (19)

and

M′ = ε

x y 0
y x′ 0
0 0 0

 , (20)

with

x ≡ y2
1v2λ12 = y2

1v2(λ1 + λ2)

x′ ≡ y2
2v2λ12 = y2

2v2(λ1 + λ2)

y ≡ y1y2v2λ123 = y1y2v2(λ3 + λ1 − λ2). (21)

Again if we identify:

a′ ≡ y2
1v2[4r12λ123 + 2r11λ12] = y2

1v2[4r12(λ3 + λ1 − λ2) + 2r11(λ1 + λ2)]

b′ ≡ y2
2v2r11λ12 = y2

2v2r11(λ1 + λ2)

c′ ≡ y1y2v2[r12λ12 + 2r11λ123] = y1y2v2[r12(λ1 + λ2) + 2r11(λ3 + λ1 − λ2)]

d′ ≡ y2
2v2(2r12λ123) = y2

2v2[2r12(λ3 + λ1 − λ2)] (22)

M0 will be giving the form of Eq. (3). Let us define:

γ ≡ (b′ − 3d′ − a′) and ρ ≡
√

a′2 + b′2 + 8c′2 + d′2 − 2a′b′ − 2a′d′ + 2b′d′ (23)

and apply non-degenerate perturbation theory correct up-to first order and calculate the third first-order corrected ket:

|ψ3〉 =


ε

γ2−ρ2

[
ρ(
√

2y cos 2θ0
12 − x′ sin 2θ0

12)− γ
√

2y
]

− 1√
2
[1 + ξε]

1√
2
[1− ξε]

 , (24)

where,
ξ ≡ [γx′ + ρ(x′ cos 2θ0

12 +
√

2y sin 2θ0
12)]/(γ

2 − ρ2). (25)

One can compare Eq. (24) with the third column of the PMNS matrix in Eq. (1) and write:

sin θ13 =
ε

γ2 − ρ2

[
ρ(
√

2y cos 2θ0
12 − x′ sin 2θ0

12)− γ
√

2y
]

. (26)

for a CP-conserving case that gives us non-zero θ13. From Eq. (24), we get the shift in θ23 from π/4 as:

tan ϕ ≡ tan(θ23 − π/4) = ξε. (27)

The corrections to θ12 is given by:

tan θ12 =
sin θ0

12 + εβ cos θ0
12

cos θ0
12 − εβ sin θ0

12
, (28)

where,

β ≡

[
y√
2

cos 2θ0
12 +

1
2 (x− x′

2 ) sin 2θ0
12

]
ρ

. (29)

Lepton flavour violating decays are completely forbidden in this model set-up owing to the S3 symmetry. A detailed discussion
can be found in [1].
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3. CONCLUSIONS
In this radiative neutrino mass model based on S3× Z2 symmetry at one-loop level, we have two Z2 odd right-handed neutrinos
N1R and N2R. When N1R and N2R are mixed maximally we get the left-handed Majorana neutrino mass matrix form needed for
θ13 = 0 and θ23 = π/4 and solar mixing of any values corresponding to the popular lepton mixings like TBM, BM and GR
as shown in Table 1. Deviating from maximal mixing between N1R and N2R yields realistic neutrino mixings in agreement with
neutrino oscillation data i.e., non-zero θ13, shits of θ23 from π/4 and small corrections to θ12. The lightest of the two Z2 odd inert
SU(2)L doublet scalars ηi, (i = 1, 2) can become a dark matter candidate. Thus the model is scotogenic.
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